SHRI VENKATESHWARA UNIVERSITY

EVALUATION SCHEME

M.TECH (Structural Engineering)

PART-TIME

(Two Years Post Graduation Programme)

(w.e.f. 2019-20)

SCHOOL OF ENGINEERING & TECHNOLOGY

SEMESTER-II													
SI.	Subject Codes	Periods			Evaluation Scheme				End Semester		Total	Credit	
No.			L	Т	Р	CT	TA	Total	PS	TE	PE		
1	WSE-	Advanced	3	0	0	20	10	30		70		100	3
	201	Solid											
		Mechanics											
2	WSE-022	Structural	3	0	0	20	10	30		70		100	3
		Health											
		Monitoring											
3	WSE-	Advanced	0	0	4				25		25	50	2
	211	Concrete Lab											
4	AUD-102	Disaster	2	0	0								0
		Management											
		Total										250	8

Evaluation for M.Tech (Structural Engineering-Part time)

M.TECH SE (Semester II) WSE-201 Advanced Solid Mechanics (Credits - 3:0:0 = 3)

Teaching Scheme Lectures: 3 hrs/week

Course outcomes: At the end of the course, students will be able to

- **1.** Solve simple problems of elasticity and plasticity understanding the basic concepts.
- 2. Apply numerical methods to solve continuum problems.

Syllabus Contents:

- **Introduction to Elasticity:** Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity.
- Strain and Stress Field: Elementary Concept of Strain, Stain at a Point, Principal Strains and

Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of Equilibrium, Hydrostatic and Deviatoric Components.

- **Equations of Elasticity:** Equations of Equilibrium, Stress- Strain relations, Strain Displacement and Compatibility Relations, Boundary Value Problems, Co-axiality of the Principal Directions.
- **Two-Dimensional Problems of Elasticity:** Plane Stress and Plane Strain Problems, Airy's stress Function, Two-Dimensional Problems in Polar Coordinates.
- **Torsion of Prismatic Bars:** Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes.
- Plastic Deformation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises

Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.

References:

- Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill, 1961.
- Elasticity, add M.H.,Elsevier,2005.
- Engineering Solid Mechanics, Ragab A.R., BayoumiS.E., CRC Press, 1999.
- Computational Elasticity, AmeenM., Narosa, 2005.
- Solid Mechanics, KazimiS. M. A., Tata McGraw Hill, 1994.
- Advanced Mechanics of Solids, SrinathL.S., Tata McGraw Hill,2000.

WSE-022 Structural Health Monitoring (Credits - 3:0:0 = 3)

Teaching Scheme Lectures: 3 hrs/week

Course Outcomes: At the end of the course, students will be able to

- **1.** Diagnosis the distress in the structure understanding the causes and factors.
- 2. Assess the health of structure using static field methods.
- **3.** Assess the health of structure using dynamic field tests.
- 4. Suggest repairs and rehabilitation measures of the structure

Syllabus Contents:

- Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance.
- Structural Health Monitoring: Concepts, Various Measures, Structural Safety in Alteration.
- Structural Audit: Assessment of Health of Structure, Collapse and Investigation, Investigation Management, SHM Procedures.
- Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware requirements, Static Response Measurement.
- Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dynamic Response Methods, Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.
- Introduction to Repairs and Rehabilitations of Structures: Case Studies (Site Visits), piezoelectric materials and other smart materials, electro-mechanical impedance (EMI) technique,

adaptations of EMI technique.

Reference Books:

- Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006.
- Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007.
- Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006.
- Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007.

WSE-211 Advanced Concrete Lab (Credits - 0:0:4 = 2)

Teaching Scheme Lab: 2 hrs/week

Course Outcomes: At the end of the course, students will be able to

- **1.** Design high grade concrete and study the parameters affecting its performance.
- 2. Conduct Non Destructive Tests on existing concrete structures.
- **3.** Apply engineering principles to understand behavior of structural/ elements.

List of Experiments/Assignments:

- 1. Study of stress-strain curve of high strength concrete, Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
- 2. Effect of cyclic loading on steel.
- 3. Non-Destructive testing of existing concrete members.
- 4. Behavior of Beams under flexure, Shear and Torsion.

Reference Books:

- Properties of Concrete, Neville A. M., 5th Edition, Prentice Hall, 2012.
- Concrete Technology, Shetty M. S., S. Chand and Co., 2006.

AUDIT 2: DISASTER MANAGEMENT AUD 102

Course Objectives: -Students will be able to:

- 1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- 2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- 3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- 4. critically understand the strengths and weaknesses of disaster management approaches,

planning and programming in different countries, particularly their home country or the countries they work in.

SYLLABUS CONTENTS

Introduction

Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life,

Destruction Of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Disaster Prone Areas In India

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Disaster Preparedness And Management

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Risk Assessment

Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

Disaster Mitigation

Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi